On Slice Polyanalytic Functions of a Quaternionic Variable
نویسندگان
چکیده
منابع مشابه
Extension results for slice regular functions of a quaternionic variable
In this paper we prove a new representation formula for slice regular functions, which shows that the value of a slice regular function f at a point q = x + yI can be recovered by the values of f at the points q + yJ and q + yK for any choice of imaginary units I, J,K. This result allows us to extend the known properties of slice regular functions defined on balls centered on the real axis to a...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Sampling and Interpolation in Bargmann-fock Spaces of Polyanalytic Functions
We give a complete characterization of all lattice sampling and interpolating sequences in the Fock space of polyanalytic functions (polyFock spaces), displaying a ”Nyquist rate” which increases with the degree of polyanaliticity. This is done introducing a unitary mapping between vector valued Hilbert spaces and poly-Fock spaces. This mapping extends Bargmann ́s theory to polyanalytic spaces. T...
متن کاملPoles of regular quaternionic functions
This paper studies the singularities of Cullen-regular functions of one quaternionic variable, as defined in [7]. The quaternionic Laurent series prove to be Cullen-regular. The singularities of Cullenregular functions are thus classified as removable, essential or poles. The quaternionic analogues of meromorphic complex functions, called semiregular functions, turn out to be quotients of Culle...
متن کاملQuaternionic linear algebra and plurisubharmonic functions of quaternionic variables
Quaternionic linear algebra and plurisubharmonic functions of quaternionic variables. Abstract We remind known and establish new properties of the Dieudonné and Moore determinants of quaternionic matrices. Using these linear algebraic results we develop a basic theory of plurisubharmonic functions of quaternionic variables. The main point of this paper is that in quaternionic algebra and analys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Mathematics
سال: 2019
ISSN: 1422-6383,1420-9012
DOI: 10.1007/s00025-018-0942-2